The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes

We study the mimetic finite difference discretization of diffusion-type problems on unstructured polyhedral meshes. We demonstrate high accuracy of the approximate solutions for general diffusion tensors, the second-order convergence rate for the scalar unknown and the first order convergence rate for the vector unknown on smooth or slightly distorted meshes, on non-matching meshes, and even on...

متن کامل

Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes

The stability and convergence properties of the mimetic finite difference method for diffusion-type problems on polyhedral meshes are analyzed. The optimal convergence rates for the scalar and vector variables in the mixed formulation of the problem are proved.

متن کامل

Convergence of Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes

The main goal of this paper is to establish the convergence of mimetic discretizations of the firstorder system that describes linear stationary diffusion on general polyhedral meshes. The main idea of the mimetic finite difference (MFD) method is to mimic the underlying properties of the original continuum differential operators, e.g. conservation laws, solution symmetries, and the fundamental...

متن کامل

The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes

We extend the mimetic finite difference (MFD) method to the numerical treatment of magnetostatic fields problems in mixed div–curl form for the divergence-free magnetic vector potential. To accomplish this task, we introduce three sets of degrees of freedom that are attached to the vertices, the edges, and the faces of the mesh, and two discrete operators mimicking the curl and the gradient ope...

متن کامل

A family of mimetic finite difference methods on polygonal and polyhedral meshes

A family of inexpensive discretization schemes for diffusion problems on unstructured polygonal and polyhedral meshes is introduced. The material properties are described by a full tensor. The theoretical results are confirmed with numerical experiments.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2006

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2005.05.028